针对有监督评论有用性预测方法中的训练数据集难以构造,以及无监督方法缺乏对情感信息支撑的问题,提出基于语义和情感信息构建一种无监督模型,用于对评论有用性进行预测,同时考虑了评论和评论下回复内容对观点的支持度用来计算观点的有用性得分,进而得到评论的有用性。同时,提出结合句法分析和改进潜在狄利克雷分配( LDA)模型的评论摘要方法用于评论有用性预测模型中的观点提取,基于句法分析结果构建must-link和cannot-link两种约束条件指导主题模型学习,在保证召回率的同时提高模型准确率。该方法在实验数据集上能取得70%左右的F1值和90%左右的排序准确率,且实例应用也表明该方法对结果具有较好的解释性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !