随着人机对话系统的不断发展,让计算机能够准确理解对话者的对话意图,并根据对话的历史信息对回复进行意图预测,对于人机对话系统有着十分重要的意义。已有研究重点关注根据对话文本和已有标签对回复进行意图预测,但是,在很多场景下回复可能并没有生成。因此,文中提出了一种结合回复生成的对话意图预测模型。在生成部分,使用Seq2Seq结构,根据对话历史信息生成文本,作为对话中未来回复的文本信息;在分类部分,利用LSTM模型,将生成的回复文本与已有的对话信息转变为子句级别的表示,并结合注意力机制突岀同一轮次对话句与生成回复的联系。实验结果表明,所提岀的模型相比简单基线模型取得了2.54%的F1- score提升,并且联合训练的方式有助于提升模型性能。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !