传统推荐系统依赖人工进行规则设计和特征提取,对评论文本內容的特征和隐信息的提取能力有限。针对该问题,融合注意力机制并基于深度学习对推荐系统进行改进,提出一种对评论文本深度建模的推荐方法。使用词嵌人模型表达数据集评论中的语义,引人注意力机制对输人内容进行重新赋权,通过并行的卷积神经网络挖掘用户和项目评论数据中的隐含特征,将两组特征耦合输人并采用因子分解机进行评分预测,得到推荐结果。实验结果表明,该方法可有效提高推荐准确率,均方误差较 Deepconn方法提升2%以上。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !