由候选项集C2生成频繁2一项集L2是关联规则Apriori算法的一个瓶颈。直接哈希修剪(DHP)算法利用一个生成的Hash表H2删减C2中无用的候选项集,以此提高t的生成效率。但传统DHP算法是一个串行算法,不能有效处理较大规模数据。针对这一问题,提出DHP的并行化算法-H—DHP。首先,对DHP算法并行化策略的可行性进行了理论分析与证明;其次,基于Hadoop平台,把Hash表皿的生成以及频繁项集L,、L3 -k的生成方法进行了并行实现,并借助Hbase数据库生成关联规则。仿真实验结果表明:与传统DHP算法相比,H_DHP算法在数据的处理时间效率、处理数据集的规模大小,以及加速比和可扩展性等方面都有较好的性能。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !