遗传算法(Genetic Algorithm-- GA) ,是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型。
传统的遗传算法虽然具有隐含的并行性,但目前大多为串行遗传算法。串行遗传算法在解决一些实际问题时,由于需要较多的个体数量和大量的计算,使得进化过程比较缓慢,难以达到实时的要求。因此并行遗传算法( Parallel Genetic Alogrithm PGA)就受到了较大的重视,并且已经成为目前遗传算法研究的主要课题。遗传算法与并行计算机相结合,能把并行机的高速性和遗传算法固有的并行性两者的长处彼此结合起来。
本论文设计和实现了简单遗传算法(GA),和并行遗传算法(PGA) 两个例子。包括:
1. Rosenbrock函 数。2. TSP问题。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !