×

基于改进BOF模型的奶牛识别算法

消耗积分:1 | 格式:rar | 大小:1.03 MB | 2017-12-14

分享资料个

  针对特征袋(BOF)模型中存在特征计算耗时、识别精度低的不足,提出一种新的改进BOF模型以提高其目标识别的精度和效率,并将其应用于奶牛个体识别。该算法首先引入优化方向梯度直方图( HOG)特征对图像进行特征提取和描述,然后利用空间金字塔匹配原理( SPM)生成图像基于视觉词典的直方图表示,最后自定义直方图交叉核作为分类器核函数。该算法在项目组自行拍摄的数据集(包含15类奶牛、共7500张奶牛头部图像)上的实验结果表明,使用基于SPM的BOF模型将算法的识别率平均提高2个百分点;使用直方图交叉核相比使用高斯核将算法的识别率平均提高2.5个百分点;使用优化HOG特征,相比使用传统HOC特征将算法识别率平均提高21.3个百分点,运算效率为其1. 68倍;相比使用尺度不变特征变换(SIFT)特征,在保证平均识别精度达95. 3%的基础上,运算效率为其7.10倍。分析结果可知,该算法在奶牛个体识别领域具有较好的鲁棒性和实用性。

基于改进BOF模型的奶牛识别算法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !