×

基于内存云的大块数据对象并行存取策略

消耗积分:3 | 格式:rar | 大小:1.17 MB | 2017-12-17

分享资料个

  由于内存云( RAMCloud)只支持最大1 MB的小块数据对象存储,因此当大于1 MB的对象需要存储在内存云集群中就会受到对象大小的限制,无法在集群中进行存储。为了解决内存云存储限制的问题,提出了基于内存云的大块数据对象并行存取策略。该存储策略首先将大块数据对象分割成若干个1 MB的小块数据对象,然后在客户端生成数据摘要,最后使用并行存储算法将客户端分割成的小块数据对象存储在内存云集群中。读取时首先读取数据摘要,然后根据数据摘要从内存云集群中并行读取小块数据对象,并将小块数据对象合并生成大块数据对象。实验结果表明:大块数据对象的并行存取策略在不破坏内存云集群体系结构的前提下存储时间为16 -18 us,读取时间为6 -7us。在InfiniBand网络架构下,所提并行算法的加速比呈现类似线性的增长,它使大块数据对象也能够像小块数据对象一样在微秒级别下快速、高效地进行存取。

基于内存云的大块数据对象并行存取策略

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !