×

基于智能监控的中小人群异常行为检测

消耗积分:1 | 格式:rar | 大小:0.88 MB | 2017-12-18

分享资料个

  针对人群异常行为检测实时性较差、分类算法识别率不高、特征量较少的问题,提出一种基于智能监控的中小人群异常行为检测算法。首先,利用快速群体密度检测算法,提取人群数量变化信息;其次,利用改进的Lucas-Kanande光流法提取视频中人群的平均动能、人群方向熵、人群距离势能;最后,利用极限学习机(ELM)算法对人群行为进行分类。使用UMN公共数据集进行测试,ELM算法对中小人群异常行为分析比中高密度人群异常行为检测算法和基于KOD能量特征的群体异常行为检测算法识别率分别高出7.13个百分点和5.89个百分点,并且人数密度估计部分平均每帧图像处理耗时相比中高密度人群异常行为检测算法减少了106 ms(近1/3)。实验结果表明:基于智能监控的中小人群异常行为检测算法能有效提高异常帧识别率和实时性。

基于智能监控的中小人群异常行为检测

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !