孪生支持向量机因其简单的模型、快速的训练速度和优秀的性能而受到广泛关注.该算法最初是为解决二分类问题而提出的。不能直接用于解决现实生活中普遍存在的多分类问题.近来,学者们致力于将二分类孪生支持向量机扩展为多分类方法并提出了多种多分类孪生支持向量机,多分类孪生支持向量机的研究已经取得了一定的进展.本文主要工作是回顾多分类孪生支持向量机的发展,对多分类孪生支持向量机进行合理归类,分析各个类型的多分类孪生支持向量机的理论和几何意义.本文以多分类孪生支持向量机的子分类器组织结构为依据,将多分类孪生支持向量机分为:基于“一对多”策略的多分类孪生支持向量机、基于“一对一”策略的多分类孪生支持向量机、基于“一对一对余”策略的多分类孪生支持向量机、基于二叉树结构的多分类孪生支持向量机和基于“多对一”策略的多分类孪生支持向量机.基于有向无环图的多分类孪生支持向量机训练过程与基于“一对一”策略的多分类孪生支持向量机类似,但是其决策方式有其特殊的优缺点,因此本文将其也独立为一类.本文分析和总结了这六种类型的多分类孪生支持向量机的算法思想、理论基础.此外。还通过实验对比了分类性能,本文工作为各种多分类孪生支持向量机之间建立了联系比较,使得初学者能够快速理解不同多分类孪生支持向量机之间的本质区别,也对实际应用中选取合适的多分类孪生支持向量机起到一定的指导作用。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !