针对神经网络初始结构的设定依赖于工作者的经验、自适应能力较差等问题,提出一种基于半监督学习(SSL)算法的动态神经网络结构设计方法。该方法采用半监督学习方法利用已标记样例和无标记样例对神经网络进行训练,得到一个性能较为完善的初始网络结构,之后采用全局敏感度分析法(GSA)对网络隐层神经元输出权值进行分析,判断隐层神经元对网络输出的影响程度,即其敏感度值大小,适时地删减敏感度值很小的神经元或增加敏感度值较大的神经元,实现动态神经网络结构的优化设计,并给出了网络结构变化过程中收敛性的证明。理论分析和Matlab仿真实验表明,基于SSL算法的神经网络隐层神经元会随训练时间而改变,实现了网络结构动态设计。在液压厚度自动控制(AGC)系统应用中,大约在160 s时系统输出达到稳定,输出误差大约为0.03 mm,与监督学习(SL)方法和无监督学习(USL)方法相比,输出误差分别减小了0.03 mm和0.02 mm,这表明基于SSL算法的动态网络在实际应用中能有效提高系统输出的准确性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !