人类对于生物系统信息的处理主要依赖于构成复杂神经网络的数十亿个神经元,并且信息以脉冲的形式进行传输。利用STDP学习算法构建基于LIF模型的两层脉冲神经网络结构,并对分类层算法进行改进,提出一种投票竞争机制。通过多次训练后对神经元表现类别进行竞争投票,优化同等神经元数量的网络机构在图像分类问题中的性能。在MNST数据集上进行实验验证,结果表明,该投票竟争机制准确率达到98.1%,与同等网络规模下未采用投票竞争机制的脉冲神经网络相比,准确率平均提高了约6%,而且当神经元数目较少时,在不增加训练时间情况下,可以取得与更加复杂网络结构相同的训练结果。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !