针对传统滤波器方法解决机器人同时定位与地图创建( SLAM)时的误差积累问题,提出了一种基于视觉词典(BOW)的三维SLAM算法,以有效解决机器人长时间运动下误差积累的问题。相比图优化SLAM中常用的随机检测和Kd树(Kd-Tree)算法,采用基于树结构的视觉词典闭环检测算法来提高相似场景的检索效率。首先采用基于CPU的特征提取算法提取图像特征,并利用交叉匹配和k最近邻(kNN)算法取得图像中鲁棒性较强的内点;然后通过基于随机抽样一致性奇异值分解( RANSAC SVD)算法计算出相邻帧的初始位姿变换,并利用通用迭代最近点(G—ICP)算法进行优化,得到高精度的位姿变换;最后利用增量平滑和建图(iSAM)图优化方法得出最终位姿,拼接出高精度的点云地图和运动轨迹。标准数据集的测试表明,所提算法在复杂情况下具有良好的鲁棒性和精度。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !