当数据集中包含的训练信息不充分时,监督的极限学习机较难应用,因此将半监督学习应用到极限学习机,提出一种半监督极限学习机分类模型;但其模型是非凸、非光滑的,很难直接求其全局最优解。为此利用组合优化方法,将提出的半监督极限学习机化为线性混合整数规划,可直接得到其全局最优解。进一步,利用近红外光谱技术,将半监督极限学习机应用于药品和杂交种子的近红外光谱数据的模式分类。与传统方法相比,在不同的光谱区域的数值实验结果显示:当数据集中包含训练信息不充分时,提出的半监督极限学习机提高了模型的推广能力,验证了所提出方法的可行性和有效性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !