在多标记学习中,由于不同的标记可能会带有自身的一些特性,所以目前已经出现了基于标记类属属性的多标记学习算法LIFT。然而,类属属性的构建可能会增加属性向量的维度,致使属性空间存在冗余信息。为此,借助模糊粗糙集提出了一种能够进行类属属性约简的多标记学习算法FRS-LIFT,其包含4个步骤:类属属性构建、属性维度约简、分类模型训练和未知样本预测。在5个多标记数据集上的实验结果表明,该算法与LIFT算法相比,不仅能够降低类属属性维数,而且在5种多标记评价指标上均具有较好的实验效果。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !