针对矩阵式瀑布分类器学习算法在负样本自举过程中无法快速自举出训练所需的高质量样本,自举过程严重影响整体学习效率及最终检测器性能等问题,提出了一种高效学习算法——负样本信息继承的矩阵式瀑布分类器高效学习算法。其自举负样本过程为样本继承与层次自举相结合,首先从训练上一层强分类器所用的负样本集中继承有效负样本,样本集不足部分再从负图像集中自举。样本继承压缩了有效样本的自举范围,可以快速自举出训练所需样本;并且自举负样时对样本进行预筛选,增加了样本复杂度,提升了最终分类器性能。实验结果表明:训练完成方面,本算法比矩阵式瀑布分类器算法节省20h;检测性能方面,比矩阵式瀑布型分类器高出1个百分点;与其他17种人体检测算法性能相比也有很好的性能表现。所提算法较矩阵式瀑布分类器学习算法在训练效率及检测性能上都有很大提升。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !