为满足深度学习推理中对不同规模矩阵乘法的计算需求,提出一种基于 Zynq soc平台的整数矩阵乘法加速器。采用基于总线广播的并行结构,充分利用片上数据的重用性并最小化中间累加结果的移动范围,以降低外部DRAM的访问需求。通过动态调整矩阵分块的大小,使加速器在计算形状不规则的矩阵乘时保持较高效率实验结果表明,在 Deep Bench测试基准下,该加速器可对双核 ARM Cortex-A9CPU的矩阵乘运算实现8.4倍的加速效果。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !