针对现有粗糙度描述子大多依赖于灰度值平均值,容易造成图像信息的丢失的问题,提出了一种新的基于高斯尺度空间粗糙度描述子的特征提取方法,并应用于花粉图像的分类和识别。首先,采用高斯金字塔算法,将花粉图像分割成不同层次的尺度空间;然后,在各个尺度空间上提取图像的粗糙度纹理特征;其次,通过计算粗糙度频率直方图的统计分布,提取不同尺度空间的粗糙度描述子( SSRHD);最后,采用欧氏距离计算图像的相似度。通过Confocal和Pollenmonitor图像库上的仿真结果表明,与基于隐马尔可夫模型的轮廓描述子(DHMMD)相比,该描述子在Confocal图像库上的平均正确识别率(CRR)提高了2.32%、平均错误识别率(FRR)降低了0.1%,而在Pollenmonitor图像库上的平均识别率也提高了1.2%。实验结果表明,该描述子能较好地描述花粉颗粒图像的纹理分布,对于花粉图像的旋转和姿态变化也具有良好的鲁棒性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !