为充分利用遥感图像的场景信息,提高场景分类的正确率,提出一种基于空间特征重标定网络的场景分类方法。采用多尺度全向髙斯导数滤波器获取遥感图像的空间特征,通过引入可分离卷积与附加动量法构建特征重标定网络,利用全连接层形成的瓶颈结构学习特征通道间的相关性,对多尺度空间特征进行权重筛选以实现特征重标定,并结合卷积神经网络训练得到最终的分类结果。实验结果表明,该方法在UCM_ Landuse与机载SAR图像数据上的分类正确率分别达到94.76%和95.38%,与MNCC、 MS-DCNN、PCA-CNN等算法相比,其遥感图像分类精度与泛化能力显著提升。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !