自组织增量学习神经网络SOINN(self-organizing mcremental neural network)是一种基于竞争学习的两层神经网络,用于在没有先验知识的情况下对动态输入数据进行在线聚类和拓扑表示,同时对噪音数据具有较强的鲁棒性.SOINN的增量性,使得它能够发现数据流中出现的新模式并进行学习,同时不影响之前学习的结果.因此,SOINN能够作为一种通用的学习算法应用于各类非监督学习问题中,对SOINN的模型和算法进行相应的调整,可以使其适用于监督学习、联想记忆、基于模式的推理、流形学习等多种学习场景中.SOINN已经在许多领域得到了应用,包括机器人智能、计算机视觉、专家系统、异常检测等。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !