×

多核学习支持向量机应用音乐流派自动分类

消耗积分:1 | 格式:rar | 大小:0.59 MB | 2018-01-09

分享资料个

  针对不同特征向量下选择最优核函数的学习方法问题,将多核学习支持向量机( MK-SVM)应用于音乐流派自动分类中,提出了将最优核函数进行加权组合构成合成核函数进行流派分类的方法。多核分类学习能够针对不同的声学特征采用不同的最优核函数,并通过学习得到各个核函数在分类中的权重,从而明确各声学特征在流派分类中的权重,为音乐流派分类中特征向量的分析和选择提供了一个清晰、明确的结果。在ISMIR 2011竞赛数据集上验证了提出的基于多核学习支持向量机( MKL-SVM)的分类方法,并与传统的基于单核支持向量机的方法进行了比较分析。实验结果表明基于MKL-SVM的音乐流派自动分类准确率比传统单核支持向量机的分类准确率提高了6. 58%,且该方法与传统的特征选择结果比较,更清楚地解释了所选择的特征向量对流派分类的影响大小,通过选择影响较大的特征组合进行分类,分类结果也有了明显的提升。

多核学习支持向量机应用音乐流派自动分类

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !