×

基于机器学习的移动终端威胁检测

消耗积分:1 | 格式:rar | 大小:1.14 MB | 2018-03-07

分享资料个

  移动端高级持续性威胁(APT)攻击是近年来出现的一种极其危险的攻击方式,通过窃取信息对设备造成高风险且可持续性的危害。而针对移动端入侵检测的方案由于检测特征不够完善,检测模型准确率不高且存在过拟合问题,导致检测效果不理想。针对上述问题提出一种优化的检测模型,利用静态检测技术提取出终端应用的静态特征,优化模型对恶意应用的敏感程度,引用滑动窗口迭代算法提取出延迟攻击特征,以优化模型对延迟攻击的检测能力,同时使用Boost技术将决策树、逻辑回归、贝叶斯等分类算法进行融合,通过实验证明该模型提升了APT检测准确率并规避了过拟合问题。

基于机器学习的移动终端威胁检测

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !