远控木马作为一种高级形态的恶意代码,不仅能收集用户敏感信息,而且可以通过命令控制引发大规模的攻击。为高效准确地识别远控木马,通过结合静态分析和动态行为分析方法提取文件特征,利用深度学习对样本特征逐层抽取的能力,构建基于循环神经网络(RNN)的样本分类模型,以对 Linux远控木马进行检测。为避免陷入局部最优,采用随机搜索参数的方法进行模型超参数选择。对基于RNN的分类模型及其他基于传统机器学习算法的模型分别进行实验,结果表明,在选取性能最佳的超参数配置下,基于RNN的样本分类模型具有更高的准确率与F1值。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !