×

基于标签主题的协同过滤推荐算法研究

消耗积分:2 | 格式:rar | 大小:1.77 MB | 2018-03-07

分享资料个

  传统基于标签的推荐算法仅考虑用户的评分信息,导致推荐准确度不高。为解决该问题,提出一种改进的协同过滤推荐算法。对用户一标签矩阵、资源一标签矩阵进行潜在Dirichlet分布建模,发掘推荐系统中的潜在语义主题,从语义层面计算用户对各资源的偏好概率,将计算出的偏好概率与协同过滤算法计算出的资源相似度相结合,预测用户偏好值,实现个性化推荐。在Movielens数据集上的实验结果表明,与传统基于标签的推荐算法相比,该算法能消除标签中存在的同义词、多义词等语义模糊问题,同时提高推荐准确度。

基于标签主题的协同过滤推荐算法研究

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !