BP神经网络的设计实例(MATLAB编程):例1 采用动量梯度下降算法训练 BP 网络。
训练样本定义如下:
输入矢量为
p =[-1 -2 3 1
-1 1 5 -3]
目标矢量为 t = [-1 -1 1 1]
解:本例的 MATLAB 程序如下:
close all
clear
echo on
clc
% NEWFF——生成一个新的前向神经网络
% TRAIN——对 BP 神经网络进行训练
% SIM——对 BP 神经网络进行仿真
pause
% 敲任意键开始
clc
% 定义训练样本
% P 为输入矢量
P=[-1, -2, 3, 1; -1, 1, 5, -3];
% T 为目标矢量
T=[-1, -1, 1, 1];
pause;
clc
% 创建一个新的前向神经网络
net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')
% 当前输入层权值和阈值
inputWeights=net.IW{1,1}
inputbias=net.b{1}
% 当前网络层权值和阈值
layerWeights=net.LW{2,1}
layerbias=net.b{2}
pause
clc
% 设置训练参数
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;
net.trainParam.epochs = 1000;
net.trainParam.goal = 1e-3;
pause
clc
% 调用 TRAINGDM 算法训练 BP 网络
[net,tr]=train(net,P,T);
pause
clc
% 对 BP 网络进行仿真
A = sim(net,P)
% 计算仿真误差
E = T - A
MSE=mse(E)
pause
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部1条评论
快来发表一下你的评论吧 !