×

如何使用情感分析和深度学习实现宏观经济预测方法

消耗积分:0 | 格式:rar | 大小:0.97 MB | 2018-11-16

分享资料个

  现代市场经济快速发展的同时也伴随着较高的风险,通过对地区投资情况提前预测,能够提前发现投资风险,为国家、企业的投资决策提供参考。针对宏观经济预测中统计数据滯后和内部关系复杂的问题,提出融合情感分析和深度学习的预测方法(SA-LSTM)。首先考虑微博的强时效性,确定了微博爬取和情感分析的方法,得到微博情感分析的分值,进而结合政府统计的结构化经济指标和长短期记忆神经网络,实现地区投资总额预测。经过实际数据计算验证,在四个数据集上,与不加入微博情感分析的LSTM网络相比,SA-LSTM能够降低预测相对误差4. 95,0.92,1.21 ,0. 66个百分点;与差分自回归移动平均模型( ARIMA)、线性回归(LR)、反向传播(BP)神经网络、长短期记忆(LSTM)网络四个方法中的最优方法相比能够降低相对误差0.06,0.92 ,0.94,0. 66个百分点。另外,SA-LSTM在多个时间片上,预测相对误差的方差最小,表明所提方法具有很好的鲁棒性,对数据抖动有良好的适应性。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !