机器人学本质上是处理世界上移动的事物。我们生活在一个火星漫游者,无人驾驶飞机测量地球,很快,自动驾驶汽车的时代。而且,虽然特定的机器人有其微妙之处,但在所有的应用中,我们也必须面对一些共同的问题,特别是状态估计和控制。机器人的状态是一组量,例如位置、方向和速度,如果知道,这些量可以完全描述机器人随时间的运动。在这里,我们把注意力完全放在估计机器人状态的问题上,而忽略了控制的概念。是的,控制是必不可少的,因为我们想让我们的机器人以某种方式运行。但是,这样做的第一步通常是确定国家的过程。而且,对于实际问题,状态估计的难度往往被低估,因此,将其与控制放在同等的地位上是很重要的。在这本书中,我们介绍了高斯测量噪声污染的线性系统的经典估计结果。然后我们研究了非高斯噪声非线性系统的一些推广。与典型的估计文本不同,我们详细研究了如何将一般的估计结果裁剪为在三维空间中操作的机器人,提倡一种处理旋转的特殊方法。本简介的其余部分提供了一些估计的历史,讨论了传感器和测量的类型,并介绍了状态估计问题。文章最后对书中的内容进行了分类,并提供了一些其他的阅读建议。
大约4000年前,早期的海员面临着一个车辆状态估计问题:如何在海上确定船的位置。早期开发原始海图和观测太阳的尝试使得当地可以沿着海岸线航行。然而,直到15世纪,随着关键技术和工具的出现,在公海上进行全球航行才成为可能。航海罗盘是磁罗盘的早期形式,允许对方向进行粗略的测量。罗盘加上粗略的海图,使人们能够沿着主要目的地(即遵循罗盘方位)之间的垂直线航行,然后逐渐发明了一系列仪器,使人们能够测量遥远点之间的角度(即十字标尺、等高仪、象限仪、六分仪经纬仪)。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !