许多行业包括商业、工业和国防领域都有大量雷达系统在应用。雷达技术的应用包括汽车防撞雷达、气象雷达、空中交通管制 (ATC) 雷达,以及国防应用中的早期预警雷达和导弹跟踪雷达。雷达的最终用途决定它的物理尺寸、工作频率、波形、发射功率、天线孔径和许多其他独特的参数。每项系统参数和每个部件都将被测试以确保雷达性能。雷达系统使用者更关注功能测试,即目标探测和跟踪。进行功能测试时,必须产生可以覆盖全部无模糊距离、全部无模糊径向速度、全部方位角和俯仰角的具有不同雷达散射截面(RCS) 的雷达目标,以确保雷达系统的精度、分辨率、成功检测率和虚警率满足系统要求。外场测试可能非常费时、复杂和费用高昂,并会涉及难以实现的可重复条件。例如,为了测试战斗机机载雷达在特定条件和距离的性能,需要部署一些人工目标用于被战斗机雷达探测和跟踪。通过对比人工目标的全球定位系统 (GPS) 坐标数据与相应雷达探测数据以检验雷达性能。因为雷达系统尚在开发期间定期进行外场测试费用可能过高,另一种方法是建立真实雷达测试模拟,包括许多不同类型目标和场景模拟。雷达目标生成能够测试包括射频的整个雷达功能,不需要昂贵的外场测试。雷达目标生成器引入具有时间延迟、多普勒频移和衰减的目标。目标生成器的几种技术已经具备,如同轴延迟线(Coaxial Delay Lines, CDL)、光纤延迟线(Fiber Optical Delay Lines, FODL) 或射频数字存储设备(Digital Radio Frequency Memory, DRFM)。现在,也可以使用商用化 (Commercial Off-The-Shelf, COTS) 的测量设备。雷达目标生成器的性能和能力以及它们测试雷达系统的可用性是关键,这主要取决于几个技术参数。本文介绍不同雷达目标生成器的架构,阐明适合雷达系统性能测试的目标生成器的设计要求和准则,同时给出测量结果举例。雷达测试在雷达系统投入使用并移交给使用者之前,必须先进行几个不同层次的测量任务。在研究和开发期间,执行主要硬件部件测试和测量。这些测试大多集中在发射机和接收机上,仅部分内容涉及信号处理或系统功能。测试和测量行业提供各种雷达测试设备。这类设备重点关注雷达的参数性能,可以在开发和生过产程中测量频谱纯度、发射功率或灵敏度。这仅测试了雷达部分性能,但如信号探测这种重要功能从来没有在闭环运行中完整测试过。要测试整个雷达系统(包含基带和射频) 并确保所有单元功能符合技术规格、满足用户要求,必须执行更多的测试,如图1所示。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !