×

基于5G边缘计算的资源调度策略Kubernetes

消耗积分:0 | 格式:pdf | 大小:1.72 MB | 2021-03-10

分享资料个

容器云是5G边缘计算的重要支撑技术,5G的大带宽、低时延和大连接三大特性给边缘计算带来较大的资源压力,容器云编排器 Kubernetes仅采集Node剩余CPU和内存两大资源指标,并运用统一的权重值计算Node优先级作为调度依据,该机制无法适应边缘计算场景下精细化的资源调度需求。面向5G边缘计算的资源调度场景,通过扩展 Kubernetes资源调度评价指标,并增加带宽、磁盘两种评价指标进行节点的过滤和选择,提出一种基于资源利用率进行指标权重自学习的调度机制WSLB。根据运行过程中的资源利用率动态计算该应用的资源权重集合,使其能够随着应用流量的大小进行自适应动态调整,利用动态学习得到的资源权重集合来计算候选Node的优先级,并选择优先级最高的Node进行部署。实验结果表明,与 Kubernetes原生调度策略相比,WSLB考虑了边缘应用的带宽、磁盘需求,避免了将应用部署到带宽、磁盘资源已饱和的Node,在大负荷与异构请求场景下可使集群资源的均衡度提升10%,资源综合利用率提升2%

基于5G边缘计算的资源调度策略Kubernetes

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !