针对粒子群优化(PSO)算法容易陷入局部最优、收敛精度不高、收敛速度较慢的问题,提出一种基于分层自主学习的改进粒子群优化(HCPSO)算法。首先,根据粒子适应度值和迭代次数将种群动态地划分为三个不同阶层;然后,根据不同阶层粒子特性,分别采用局部学习模型、标准学习模型以及全局学习模型,增加粒子多样性,反映出个体差异的认知对算法性能的影响,提高算法的收敛速度和收敛精度;最后,将HCPSO算法与PSO算法、自适应多子群粒子群优化(PSO-SMS)算法以及动态多子群粒子群优化(DMS-PSO)算法分别在6个典型的测试函数上进行对比仿真实验。仿真结果表明,HCPSO算法的收敛速度和收敛精度相对给出的对比算法均有明显提升,并且算法执行时间和基本PSO算法执行时间差距在0.001量级内,在不增加算法复杂度的情况下算法性能更高.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !