针对原始粒子群优化算法( PSO)在搜索过程中容易陷入局部最优点的问题,并尽量避免破坏种群多样性,提出一种含交叉项的混合二范数粒子群优化算法HTPSO。首先,利用二范数原理计算当前粒子与个体历史最优粒子间的欧氏距离;其次,将欧氏距离引入速度迭代公式以影响社交项对粒子速度的作用,并按照一定规律随机分布惯性权重;最后,在此基础上简化粒子群算法,并将差分进化( DE)算法中的交叉算子融入该算法中,使粒子能在一定概率下与个体历史最优粒子交叉。为了验证HTPSO的性能,与利用正弦函数改进惯性权重的粒子群优化算法( SinPSO)、自适应粒子群优化算法(SelPSO)、基于自适应惯性权重的均值粒子群优化算法(MAWPSO)和简化粒子群优化算法( SPSO)在不同维度下解决8个常用基准函数,并根据T-test、成功率和平均迭代次数分析了各算法的优化结果。实验结果表明,HTPSO具有较优秀的收敛能力,且粒子运动非常灵活。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !