近年来,随着软件需求的不断増加,开发人员通过复用已有的代码向项目中引入了大量的克隆代码。随着软件版本的迭代和更新,克隆代码会发生变化,而克隆代码变化会导致额外的维护代价,并逐渐成为软件维护的负担。硏究人员尝试利用机器学习方法开展克隆代码一致性维护需求预测硏究,通过预测尭隆代码的变化是否会导致额外的维护代价,来帮助软件质量保障团队更有效地分配维护资源,从而提高工作效率并降低运维成本。然而,在软件开发的初期阶段,软件项目往往没有经过充分的演化,缺少历史数据用于构建有效的预测模型,因此跨项目克隆代码一致性维护需求预测方法被提岀。文中以减少跨项目数据分布差异为切入点,提出了基于迁移学习和过采样技术的跨项目克隆代码一致性维护需求预测方法 CPCCH十,旨在将测试集与数据集映射到核空间中,通过迁移主成分分析方法减小跨项目数据的分布差异,并对数据集的类不平衡问题进行处理,从而提高跨项目预测模型的性能。在实验数据集方面,选取了η个开源数据集,合计形成42组跨项目克隆代码一致性维护需求预测任务。将提出的方法与使用基分类器的方法进行比较,评估指标包含 Precision, Recall和F- Measure。实验结果表明,CPCCP十能更有效地进行跨项目克隆代码一致性维护需求的预测。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !