×

基于Nios驱动的AD5629R BeMicro FPGA方案

消耗积分:2 | 格式:pdf | 大小:1.42MB | 2021-05-11

吴湛

分享资料个

This version (26 Jan 2021 01:25) was approved by Robin Getz.The Previously approved version (15 Feb 2013 15:02) is available.Diff

BeMicro FPGA Project for AD5629R with Nios driver

Supported Devices

Evaluation Boards

Overview

This lab presents the steps to setup an environment for using the EVAL-AD5629 evaluation board together with the BeMicro SDK USB stick, the Nios II Embedded Development Suite (EDS) and the Micrium μC-Probe run-time monitoring tool. Below is presented a picture of the EVAL-AD5629 Evaluation Board with the BeMicro SDK Platform.

For component evaluation and performance purposes, as opposed to quick prototyping, the user is directed to use the part evaluation setup. This consists of:

  • 1. A controller board like the SDP-B ( EVAL-SDP-CS1Z)
  • 2. The component SDP compatible product evaluation board
  • 3. Corresponding PC software ( shipped with the product evaluation board)

The SDP-B controller board is part of Analog Devices System Demonstration Platform (SDP). It provides a high speed USB 2.0 connection from the PC to the component evaluation board. The PC runs the evaluation software. Each evaluation board, which is an SDP compatible daughter board, includes the necessary installation file required for performance testing.

Note: it is expected that the analog performance on the two platforms may differ.

28 Sep 2012 09:00 · Adrian Costina

Below is presented a picture of SDP-B Controller Board with the EVAL-AD5629 Evaluation Board.

The AD5629R device is low power, octal, 12-bit, buffered voltage-output DAC. Device is guaranteed monotonic by design. The AD5629R has an on-chip reference with an internal gain of 2. The AD5629R-1 has a 1.25 V, 5 ppm/°C reference, giving a full-scale output range of 2.5 V. The AD5629R-2/AD5629R-3 have a 2.5 V 5 ppm/°C reference, giving a full-scale output range of 5 V depending on the option selected. Devices with 1.25 V reference selected operate from a single 2.7 V to 5.5 V supply. Devices with 2.5 V reference selected operate from 4.5 V to 5.5 V. The on-chip reference is off at power-up, allowing the use of an external reference. The internal reference is enabled via a software write. The parts incorporate a power-on reset circuit to ensure that the DAC output powers up to 0 V (AD5629R-1/AD5629R-2) or midscale (AD5629R-3) and remains powered up at this level until a valid write takes place. The part contains a power-down feature that reduces the current consumption of the device to 400 nA at 5 V and provides software-selectable output loads while in power-down mode for any or all DAC channels.

The EVAL-AD5629 evaluation board is designed to help customers quickly prototype new AD5629R circuits and reduce design time. To power the AD5629 evaluation board supply 5V between the AVDD and AGND inputs for the analog supply.

More information

Getting Started

The first objective is to ensure that you have all of the items needed and to install the software tools so that you are ready to create and run the evaluation project.

Hardware Items

Below is presented the list of required hardware items:

  • Arrow Electronics BeMicro SDK FPGA-based MCU Evaluation Board
  • EVAL-AD5629 evaluation board
  • Intel Pentium III or compatible Windows PC, running at 866MHz or faster, with a minimum of 512MB of system memory

Software Tools

Below is presented the list of required software tools:

The Quartus II design software and the Nios II EDS is available via the Altera Complete Design Suite DVD or by downloading from the web.

The Micrium uC/Probe Trial version 2.5 is available via download from the web at http://micrium.com/tools/ucprobe/trial/. After installation add to the “Path” system variable the entry “%QUARTUS_ROOTDIR%/bin/“ on the third position in the list.

Downloads

Extract the Lab Files

Create a folder called “ADIEvalBoardLab” on your PC and extract the ad5629r_evalboardlab.zip archive to this folder. Make sure that there are NO SPACES in the directory path. After extracting the archive the following folders should be present in the ADIEvalBoardLab folder: FPGA, Software, ucProbeInterface, NiosCpu.

Install the USB-Blaster Device Driver

After the Quartus II and Nios II software packages are installed, you can plug the BeMicro SDK board into your USB port. Your Windows PC will find the new hardware and try to install the driver.

Since Windows cannot locate the driver for the device the automatic installation will fail and the driver has to be installed manually. In the Device Manager right click on the USB-Blaster device and select Update Driver Software.

In the next dialog box select the option Browse my computer for driver software. A new dialog will open where it is possible to point to the driver’s location. Set the location to altera//quartus/drivers/usb-blaster and press Next.

If Windows presents you with a message that the drivers have not passed Windows Logo testing, please click “Install this driver software anyway”. Upon installation completion a message will be displayed to inform that the installation is finished.

image016.jpg

15 Sep 2011 15:23

Quick Evaluation

The next sections of this lab present all the steps needed to create a fully functional project that can be used for evaluating the operation of the ADI platform. It is possible to skip these steps and load into the FPGA an image that contains a fully functional system that can be used together with the uC-Probe interface for the ADI platform evalution. The first step of the quick evaluation process is to program the FPGA with the image provided in the lab files. Before the image can be loaded the Quartus II Web Edition tool or the Quartus II Programmer must be installed on your computer. To load the FPGA image run the program_fpga.bat batch file located in the ADIEvalBoardLab/FPGA folder. After the image was loaded the system must be reset. Now the FPGA contains a fully functional system and it is possible to skip directly to the DEMONSTRATION PROJECT USER INTERFACE section of this lab.

15 Sep 2011 15:43

FPGA Design

The lab is delivered together with a set of design files that are used to evaluate the ADI part. The FPGA image that must be loaded into the BeMicroSDK FPGA is included in the design files. This section presents the components included in the FPGA image and also the procedure to load the image into the FPGA.

FPGA Components

The following components are implemented in the FPGA design:

Name Address IRQ
CPU 800 -
Main PLL 80 -
JTAG UART 90 0
uC-Probe UART A0 1
EPCS FLASH CONTROLLER 1800 2
OnChip RAM 10000 -
LED GPIO 100 -
SPI_0_P0 2000 4
SPI_1_P0 2040 6
GPIO 2080 -
CTRL GPIO 20A0 -
SPI_0_P1 0 5
SPI_1_P1 20 7
SYS ID 40 -
TIMER 60 3
I2C_0 C0 8
I2C_1 E0 9

Load the FPGA Image

To load the FPGA image the following steps must be performed:

  • Plug in the BeMicroSDK Stick into a USB port
  • Start Altera Quartus Web edition and start the programmer by selecting the menu option Tools→Programmer
  • Select Add File and select the file ADIEvalBoardLab/FPGA/SDP1_bemicro2.jic
  • Check the Program/Configure box and press Start

image020.jpg

After finishing, the image is permanently loaded to the configuration Flash and the system will start with a blinking LED after reset or power up.

15 Sep 2011 15:47

NIOS II Software Design

This section presents the steps for developing a software application that will run on the BeMicroSDK system and will be used for controlling and monitoring the operation of the ADI evaluation board.

Create a new project using the NIOS II Software Build Tools for Eclipse

Launch the Nios II SBT from the Start → All Programs → Altera → Nios II EDS 11.0 → Nios II 11.0 Software Build Tools for Eclipse (SBT).

NOTE: Windows 7 users will need to right-click and select Run as administrator. Another method is to right-click and select Properties and click on the Compatibility tab and select the Run This Program As An Administrator checkbox, which will make this a permanent change.

1. Initialize Eclipse workspace

  • When Eclipse first launches, a dialog box appears asking what directory it should use for its workspace. It is useful to have a separate Eclipse workspace associated with each hardware project that is created in SOPC Builder. Browse to the ADIEvalBoardLab directory and click Make New Folder to create a folder for the software project. Name the new folder “eclipse_workspace”. After selecting the workspace directory, click OK and Eclipse will launch and the workbench will appear in the Nios II perspective.

2. Create a new software project in the SBT

  • Select File → New → Nios II Application and BSP from Template.

  • Click the Browse button in the SOPC Information File Name dialog box.
  • Select the uC.sopcinfo file located in the ADIEvalBoardLab/FPGA directory.
  • Set the name of the Application project to “ADIEvalBoard”.
  • Select the Blank Project template under Project template.
  • Click the Finish button.

The tool will create two new software project directories. Each Nios II application has 2 project directories in the Eclipse workspace.

  • The application software project itself - this where the application lives.
  • The second is the Board Support Package (BSP) project associated with the main application software project. This project will build the system library drivers for the specific SOPC system. This project inherits the name from the main software project and appends “_bsp” to that.

Since you chose the blank project template, there are no source files in the application project directory at this time. The BSP contains a directory of software drivers as well as a system.h header file, system initialization source code and other software infrastructure.

Configure the Board Support Package

  • Configure the board support package to specify the properties of this software system by using the BSP Editor tool. These properties include what interface should be used for stdio and stderr messages, the memory in which stack and heap should be allocated and whether an operating system or network stack should be included with this BSP.
  • Right click on the ADIEvalBoard_bsp project and select Nios II → BSP Editor… from the right-click menu.

The software project provided in this lab does not make use of an operating system. All stdout, stdin and stderr messages will be directed to the jtag_uart.

  • Select the Common settings view. In the Common settings view, change the following settings:
    • Select the jtag_uart for stdin, stdout and stderr messages. Note that you have more than one choice.
    • Select none for the sys_clk_timer and timestamp_timer.

  • Select File → Save to save the board support package configuration to the settings.bsp file.
  • Click the Generate button to update the BSP.
  • When the generate has completed, select File → Exit to close the BSP Editor.

Configure BSP Project Build Properties

In addition to the board support package settings configured using the BSP Editor, there are other compilation settings managed by the Eclipse environment such as compiler flags and optimization level.

  • Right click on the ADIEvalBoard_bsp software project and select Properties from the right-click menu.
  • On the left-hand menu, select Nios II BSP Properties.
  • During compilation, the code may have various levels of optimization which is a tradeoff between code size and performance. Change the Optimization level setting to Level 2
  • Since our software does not make use of C++, uncheck Support C++.
  • Check the Reduced device drivers option
  • Check the Small C library option
  • Press Apply and OK to regenerate the BSP and close the Properties window.

Add source code to the project

In Windows Explorer locate the project directory which contains a directory called Software. In Windows Explorer select all the files and directories from the Software folder and drag and drop them into the Eclipse software project ADIEvalBoard.

  • Select all the files and folders and drag them over the ADIEvalBoard project in the SBT window and drop the files onto the project folder.

  • A dialog box will appear to select the desired operation. Select the option Copy files and folders and press OK.

  • This should cause the source files to be physically copied into the file system location of the software project directory and register these source files within the Eclipse workspace so that they appear in the Project Explorer file listing.

Configure Application Project Build Properties

Just as you configured the optimization level for the BSP project, you should set the optimization level for the application software project ADIEvalBoard as well.

  • Right click on the ADIEvalBoard software project and select Properties from the right-click menu.
  • On the left-hand menu, select the Nios II Application Properties tab
  • Change the Optimization level setting to Level 2.
  • Press Apply and OK to save the changes.

Define Application Include Directories

Application code can be conveniently organized in a directory structure. This section shows how to define these paths in the makefile.

  • In the Eclipse environment double click on my_include_paths.in to open the file.
  • Click the Ctrl and A keys to select all the text. Click the Ctrl and C keys to copy all the text.

  • Double click on Makefile to open the file.
  • If you see the message shown here about resources being out of sync, right click on the Makefile and select Refresh.

  • Select the line APP_INCLUDE_DIRS :=

  • Click the Ctrl and V keys to replace the selected line with the include paths.

  • Click the Ctrl and S keys to save the Makefile.

Compile, Download and Run the Software Project

1. Build the Application and BSP Projects

  • Right click the ADIEvalBoard_bsp software project and choose Build Project to build the board support package.
  • When that build completes, right click the ADIEvalBoard application software project and choose Build Project to build the Nios II application.

These 2 steps will compile and build the associated board support package, then the actual application software project itself. The result of the compilation process will be an Executable and Linked Format (.elf) file for the application, the ADIEvalBoard.elf file.

2. Verify the Board Connection

The BeMicroSDK hardware is designed with a System ID peripheral. This peripheral is assigned a unique value based on when the hardware design was last modified in the SOPC Builder tool. SOPC Builder also places this information in the .sopcinfo hardware description file. The BSP is built based on the information in the .sopcinfo file.

  • Select the ADIEvalBoard application software project.
  • Select Run → Run Configurations…
  • Select the Nios II Hardware configuration type.
  • Press the New button to create a new configuration.
  • Change the configuration name to BeMicroSDK and click Apply.
  • On the Target Connection tab, press the Refresh Connections button. You may need to expand the window or scroll to the right to see this button.
  • Select the jtag_uart as the Byte Stream Device for stdio.
  • Check the Ignore mismatched system ID option.
  • Check the Ignore mismatched system timestamp option.

3. Run the Software Project on the Target

To run the software project on the Nios II processor:

  • Press the Run button in the Run Configurations window.

This will re-build the software project to create an up–to-date executable and then download the code into memory on the BeMicroSDK hardware. The debugger resets the Nios II processor, and it executes the downloaded code. Note that the code is verified in memory before it is executed.

The code size and start address might be different than the ones displayed in the above screenshot.

12 Sep 2011 11:39

uC-Probe Interface

A notable challenge in embedded systems development is to overcome the lack of feedback that such systems typically provide. Many developers resort to blinking LEDs or instrumenting their code with printf() in order to determine whether or not their systems are running as expected. Micrium provides a unique tool named μC-Probe to assist these developers. With this tool, developers can effortlessly read and write the variables on a running embedded system. This section presents the steps required to install the Micrium uC-Probe software tool and to run the demonstration project for the ADI evaluation board. A description of the uC-Probe demonstration interface is provided.

Configure uC-Probe

Launch uC-Probe from the Start → All Programs → Micrium → uC-Probe.

Select uC-Probe options.

  • Click on the uC-Probe icon on the top left portion of the screen.
  • Click on the Options button to open the dialog box.

Set target board communication protocol as JTAG UART

  • Click on the Communication tab icon on the top left portion of the dialog box
  • Select the JTAG UART option.

Setup JTAG UART communication settings

  • Select the JTAG-UART option from the Communication tab.
  • Press the Open File button to select the JTAG Debug Information file (.jdi)
  • Navigate to the ADIEvalBoardLab/FPGA folder and select the BeMicroSDK.jdi file. Press Open.
  • Type the value 1 in the the Device Id window.

  • Select uCProbe_uart(0) from the Instance Id pulldown menu.

  • Press Apply and OK to exit the options menu. The embedded target has two UARTs. uC-Probe will be communicating with the uCProbe_uart.

Load and Run the Demonstration Project

  • Click the Open option from the uC-Probe menu and select the file ADIEvalBoardLab/ucProbeInterface/AD5629_Interface.wsp.

  • Before opening the interface uC-Probe will ask for a symbols file that must be associated with the interface. If the lab was done according to the steps provided in the Quick Evaluation section, select the file ADIEvalBoardLab/ucProbeInterface/ADIEvalBoard.elf to be loaded as a symbol file, otherwise select the file ADIEvalBoardLab/FPGA/software/ADIEvalBoard/ADIEvalBoard.elf to be loaded as a symbol file.

image080.jpg

  • Run the demonstration project by pressing the Play button.

Demonstration Project User Interface

The following figure presents the uC-Probe interface that can be used for monitoring and controlling the operation of the EVAL-AD5629 evaluation board.

Section A is used to activate the board and monitor activity. The communication with the board is activated / deactivated by toggling the ON/OFF switch. The Activity LED turns green when the communication is active. If the ON/OFF switch is set to ON and the Activity LED is BLACK it means that there is a communication problem with the board. See the Troubleshooting section for indications on how to fix the communication problems.

Section B is used to write/update DAC channels. The horizontal slider represents the data value and the vertical slider represents the DAC channel. An operation can be chosen by pressing one of the four buttons.

Section C is used to display the output value of any DAC channel.

Section D is used to control the LDAC and CLR pins of the AD5629R.

Section E is used to change the clear code value,to reset the DAC to the power-on reset code and to turn on or off the internal reference.

Section F is used to select one of four separate modes of operations. Any or all DACs can be powered down by pressing the corresponding button and selecting an operating mode. After any change of the buttons position is necessary to move the slider to the desired position.

Section G is used to control the LDAC register. If the button is not pressed for a DAC channel means that this channel's update is controlled by the LDAC pin. After any change of the buttons position is necessary to press the Load LDAC Reg. button.

Troubleshooting

In case there is a communication problem with the board the follwing actions can be perfomed in order to try to fix the issues:

  • Check that the evaluation board is powered.
  • Check that the USB connection cable is properly connected to the device and to the computer and that the USB Blaster Device Driver driver is installed correctly. If the deriver is not correctly installed perform the steps described in the Getting Started → Install te USB-Blaster Device Driver section.
  • In uC-Probe right-click on the System Browser window select Remove Symbols. A dialog box will open to select the symbols to remove. Press OK to remove the symbols.

  • After removing the symbols a new set of symbols must be added in order for the interface to be functional. In uC-Probe right-click on the System Browser window select Add Symbols. A dialog box will open to select the symbols to be added. If the lab was done according to the steps provided in the Quick Evaluation section, select the file ADIEvalBoardLab/ucProbeInterface/ADIEvalBoard.elf to be loaded as a symbol file, otherwise select the file ADIEvalBoardLab/FPGA/software/ADIEvalBoard/ADIEvalBoard.elf to be loaded as a symbol file.

  • If the communication problem persists even after performing the previous steps, restart the uC-Probe application and try to run the interface again.

More information

21 Sep 2011 09:17

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !