针对复杂的脑电问题,介绍了一种对单次思维脑电信号提取、分类的方法。该方法的主要思想是将独立成分分量和共空域子空间分解方法以及支持向量机学习方法结合起来,用于提取脑电信号特征。该方法分别被用于BCI Competition 2003 Data set IV和BCI Competition III Data set I,正确率分别达到了89%和92%。实验证明独立成分分量算法和共空域子空间分解方法能够很好地结合起来进行脑思维的分类,分类正确率很高,是一种快速、稳定可行的分解方法。
关 键 词 脑-机接口; 脑电信号; 独立分量分析; 支持向量机
Abstract Identification and classification technology plays an important part in study of the brain-computer interface (BCI) system. In this paper, an algorithm is presented to deals with the complex brain signals and extract features and classify single-trial electroencephalogram (EEG). The algorithm combines independent component analysis algorithm and common spatial subspace decomposition with support vector machine to extract features from multi-channel EEG and electro cortico gram (ECoG). This algorithm was applied to the results of data analysis show that the proposed method can classify with high accuracy.
Key words brain-computer interface; electroencephalograms; independent component analysis (ICA); support vector machine
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !