目标检测领域没有MNIST和Fashion-MNIST这样的小型数据集。为了快速演示对象检测模型,我们收集并标记了一个小型数据集。首先,我们从办公室拍摄了免费香蕉的照片,并生成了 1000 张不同旋转和大小的香蕉图像。然后我们将每个香蕉图像放置在一些背景图像上的随机位置。最后,我们为图像上的那些香蕉标记了边界框。
14.6.1。下载数据集
带有所有图像和 csv 标签文件的香蕉检测数据集可以直接从互联网上下载。
14.6.2。读取数据集
我们将在 read_data_bananas
下面的函数中读取香蕉检测数据集。数据集包括一个 csv 文件,用于对象类标签和左上角和右下角的地面实况边界框坐标。
#@save
def read_data_bananas(is_train=True):
"""Read the banana detection dataset images and labels."""
data_dir = d2l.download_extract('banana-detection')
csv_fname = os.path.join(data_dir, 'bananas_train' if is_train
else 'bananas_val', 'label.csv')
csv_data = pd.read_csv(csv_fname)
csv_data = csv_data.set_index('img_name')
images, targets = [], []
for img_name, target in csv_data.iterrows():
images.append(torchvision.io.read_image(
os.path.join(data_dir, 'bananas_train' if is_train else
'bananas_val', 'images', f'{img_name}')))
# Here `target` contains (class, upper-left x, upper-left y,
# lower-right x, lower-right y), where all the images have the same
# banana class (index 0)
targets.append(list(target))
return images, torch.tensor(targets).unsqueeze(1) / 256
#@save
def read_data_bananas(is_train=True):
"""Read the banana detection dataset images and labels."""
data_dir = d2l.download_extract('banana-detection')
csv_fname = os.path.join(data_dir, 'bananas_train' if is_train
else 'bananas_val', 'label.csv')
csv_data = pd.read_csv(csv_fname)
csv_data = csv_data.set_index('img_name')
images, targets = [], []
for img_name, target in csv_data.iterrows():
images.append(image.imread(
os.path.join(data_dir, 'bananas_train' if is_train else
'bananas_val', 'images', f'{img_name}')))
# Here `target` contains (class, upper-left x, upper-left y,
# lower-right x, lower-right y), where all the images have the same
# banana class (index 0)
targets.append(list(target))
return images, np.expand_dims(np.array(targets), 1) / 256
通过使用read_data_bananas
函数读取图像和标签,下面的BananasDataset
类将允许我们创建一个自定义Dataset
实例来加载香蕉检测数据集。
#@save
class BananasDataset(torch.utils.data.Dataset):
"""A customized dataset to load the banana detection dataset."""
def __init__(self, is_train):
self.features, self.labels = read_data_bananas(is_train)
print('read ' + str(len(self.features)) + (f' training examples' if
is_train else f' validation examples'))
def __getitem__(self, idx):
return (self.features[idx].float(), self.labels[idx])
def __len__(self):
return len(self.features)
#@save
class BananasDataset(gluon.data.Dataset):
"""A customized dataset to load the banana detection dataset."""
def __init__(self, is_train):
self.features, self.labels = read_data_bananas(is_train)
print('read ' + str(len(self.features)) + (f' training examples' if
is_train else f' validation examples'))
def __getitem__(self, idx):
return (self.features[idx].astype('float32').transpose(2, 0, 1),
self.labels[idx])
def __len__(self):
return len(self.features)
最后,我们定义load_data_bananas
函数为训练集和测试集返回两个数据迭代器实例。对于测试数据集,不需要随机读取。
让我们读取一个 minibatch 并打印这个 minibatch 中图像和标签的形状。图像小批量的形状(批量大小、通道数、高度、宽度)看起来很熟悉:它与我们之前的图像分类任务相同。label minibatch的shape是(batch size,m, 5), 其中m是任何图像在数据集中具有的最大可能数量的边界框。
虽然 minibatch 的计算效率更高,但它要求所有图像示例都包含相同数量的边界框,以通过连接形成一个 minibatch。通常,图像可能具有不同数量的边界框;因此,图像少于m 边界框将被非法边界框填充,直到 m到达了。然后每个边界框的标签用一个长度为5的数组表示,数组的第一个元素是边界框中物体的类,其中-1表示填充的非法边界框。数组的其余四个元素是 (x,y)-边界框左上角和右下角的坐标值(范围在0到1之间)。对于香蕉数据集,由于每张图像上只有一个边界框,我们有m=1.
read 1000 training examples
read 100 validation examples
(torch.Size([32, 3, 256, 256]), torch.Size([32, 1, 5]))
14.6.3。示范
让我们演示十张带有标记的真实边界框的图像。我们可以看到香蕉的旋转、大小和位置在所有这些图像中都不同。当然,这只是一个简单的人工数据集。实际上,真实世界的数据集通常要复杂得多。
imgs = (batch[0][:10].permute(0, 2, 3, 1)) / 255
axes = d2l.show_images(imgs, 2, 5, scale=2)
for ax, label in zip(axes, batch[1][:10]):
d2l.show_bboxes(ax, [label[0