针对基于模糊c均值聚类( FCM)的图像分割算法仅利用像素的灰度信息、噪声抑制不理想、算法鲁棒性不高的问题,提出了一种基于像素邻域信息约束的FCM图像分割算法。该算法在模糊目标函数中引入邻域信息约束,通过约束系数自适应调节控制邻域信息约束强度,自优化迭代更新聚类中心和聚类隶属度矩阵,使模糊目标函数收敛到最小,并利用像素最优聚类隶属度去模糊化操作实现图像分割。实验结果表明,该算法在获得较高的图像分割精度的同时,具有较强的噪声抑制能力。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !