×

高精度电池测量为电池管理增添了实际价值

消耗积分:1 | 格式:rar | 大小:0.5 MB | 2017-11-17

分享资料个

目前这一代电动汽车依靠能量范围介于16kWh至53kWh之间的锂离子电池组提供动力。而仅仅一加仑汽油所包含的能量就超过了36kWh.对于电动汽车或混合动力汽车(HEV)抑或是任何的大功率电池系统来说,若要与内燃机(ICE)展开竞争就必需充分利用电池的全部储能。为此,必须对电池组内部的每节电池进行仔细周密的监视和控制。
  大功率电池组由一长串串接电池组成。电池监视器IC直接连接至每节电池,负责准确地测量每节电池的电压。这绝不是一件简单的工作,因为各个电池位于一个非常高电压电池串的不同点上,而电池串很容易遭受惊人的电尖峰和电磁干扰(EMI)。电池管理系统(BMS)整合了电池电压与电流、温度和工作情况记录,以连续获知每节电池的状况。虽然这是一项棘手的难题,但利用准确的监视和控制仍可实现电池组行车里程、可靠性和安全性的最大化。
  HEV或EV中电池的预计使用期限是10~15年,而当电池失去其原始容量的80%时即被认为处于其寿命末期。通过限制工作电荷状态(不允许电池满充电或完全放电),可最大限度地增加电池的使用寿命和可靠性。典型的电池组工作于一个受限的范围内,例如:20% SOC至80% SOC,其中SOC表示“电荷状态”。这些SOC限值可根据电池的老化和工作情况(比如:高温环境)进行调节。由于采用了此类限值,故电池组不会以满容量地使用。例如:以20% SOC至80% SOC来运作电池组将把可用SOC限制在这60%范围。BMS所面临的挑战是使每节电池尽可能接近限值运作,而不要超过限值。锂电池在其工作范围内表现出平坦的放电曲线,使得上述挑战的难度进一步加大。因此,在整个工作范围内电池电压的变化非常之小,作为SOC计算的一部分,电池监视器必须进行非常准确的测量。
  为了阐明电池测量准确度的重要性,我们来看一下简化的锂电池放电曲线(示于图1)。该曲线在整个工作区内具有一个恒定的5mV/% (SOC)斜率。倘若电池电压测量准确度欠佳,那么工作在20%至80% SOC范围之内且具有相似放电特性的电池组将面临严重的不利后果。
  高精度电池测量为电池管理增添了实际价值
  如图2所示,倘若电池监视器具有一个±10mV的电池电压测量误差,则3.75V的电池电压测量值实际上有可能对应的真实电池电压介于3.74V和3.76V之间。这对应的实际SOC范围为76%至80%.由于存在该测量误差,因此必须利用一个“保护带”对工作范围加以限制,从而确保不超过工作限值。在本例中,必须把工作范围限制在22%至78%的测量范围(而不是20%至80%)。假如期望电池组保持相同的范围,那么具有该准确度的BMS将需要额外的电池容量以补偿保护带限制。假设60%的可用SOC,则电池容量必须加大7% (注1)以补偿±10mV的电池测量误差。对于一辆使用价格3000美元的5kWh电池组(即每kWh电能的成本为600美元)的HEV来说,这将造成成本额外增加214美元。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !