针对传统分类算法对维吾尔文文本分类准确率不高的问题,提出了一种基于深度置信网络的维吾尔文短信文本分类模型。深度学习模拟人脑的多层次结构,对数据从低层到高层逐渐地进行特征提取,深层挖掘数据集的分布规律,从而提高分类准确性。通过逐层无监督的方法完成深度置信网络的初始化,并结合softmax回归分类器实现文本的分类。最后在收集的维吾尔文短信数据集上进行实验论证。实验结果表明,相比KNN、SVM和决策树算法,深度置信网络具有更好的分类效果,准确率更高。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !