×

局部放电的深度置信网络方法

消耗积分:0 | 格式:rar | 大小:2.30 MB | 2018-01-25

分享资料个

  气体绝缘电器(gas insulated switchgear,GIS)内部绝缘缺陷产生的局部放电(partial discharge,PD),特征表现较复杂,分散性大,易受运行环境影响,而基于PD统计特征模式识别的传统方法,特征量选取主观性较强,且容易丢失部分特征信息,尤其对自由金属微粒类型缺陷识别率较低。因此,提出了一种基于深度置信网络(deep belief nets,DBN)的GIS设备内部PD模式识别方法,DBN能从数据中自主学习出高阶特征,避免了特征量选取的主观影响,能较好识别自由金属微粒类型缺陷,且识别用时远低于支持向量机(support vector machine, SVM)和BP神经网络(back propagation neural networks,BPNN)算法,作为对GIS设备PD模式识别的新方法具有一定的实用价值。

局部放电的深度置信网络方法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !