针对超声图像样本冗余、不同标准切面因疾病导致的高度相似性、感兴趣区域定位不准确问题,提出一种结合特征袋(BOF)特征、主动学习方法和多分类AdaBoost改进算法的经食管超声心动图(TEE)标准切面分类方法。首先采用BOF方法对超声图像进行描述;然后采用主动学习方法选择对分类器最有价值的样本作为训练集;最后,在AdaBoost算法对弱分类器的迭代训练中,根据临时强分类器的分类情况调整样本更新规则,实现对多分类AdaBoost算法的改进和TEE标准切面的分类。在TEE数据集和三个UCI数据集上的实验表明,相比AdaBoost.SAMME算法、多分类支持向量机(SVM)算法、BP神经网络和AdaBoost.M2算法,所提算法在各个数据集上的G-mean指标、整体分类准确率和大多数类别分类准确率都有不同程度的提升,且比较难分的类别分类准确率提升最为显著。实验结果表明,在包含类间相似样本的数据集上,分类器的性能有显著提升。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !