针对可变形部件模型(DPM)算法在行人检测领域中的检测精度高,但由于在特征提取和行人定位两步中的计算量过大,导致检测速度过慢而不能应用于实时行人检测的问题,提出了一种融合分支定界算法和级联检测算法的可变形部件模型( BBCDPM)算法。首先,选取梯度方向直方图(HOG)特征作为描述人体目标的特征,从而生成特征金字塔;然后,进行可变形部件模型的建模,并使用隐变量支持向量机( LSVM)对模型进行训练;同时,为了提高行人检测的准确度,将传统可变形部件模型算法中的5个部件模型增加到了8个;最后,在利用了级联检测算法简化检测模型的基础上,结合了分支定界算法寻找最大值,排除大量不可能的对象假设,完成对行人目标的定位和检测。在INRIA数据集上进行了实验,结果表明,与传统DPM算法相比,该算法将准确率提高了12个百分点,且大幅提高了行人检测与识别的速度。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !