×

一种阈值优化的文本语义分类算法

消耗积分:2 | 格式:rar | 大小:0.94 MB | 2017-12-09

分享资料个

  传统的文本分类多以空间向量模型为基础,采用层次分类树模型进行统计分析,该模型多数没有结合特征项语义信息,因此可能产生大量频繁语义模式,增加了分类路径。结合基本显露模式( eEP)在分类上的良好区分特性和基于最小期望风险代价的决策粗糙集模型,提出了一种阈值优化的文本语义分类算法TSCTO:在获取文档特征项频率分布表之后,首先利用粗糙集联合决策分布密度矩阵,计算最小阈值,提取满足一定阈值的高频词;然后结合语义分析与逆向文档频率方法获取基于语义类内文档频率的高频词;采用eEP分类方法获得最简模式;最后利用相似性公式和《知网》提供的语义相关度,计算文本相似性得分,利用三支决策理论对阈值进行选择。实验结果表明,TSCTO算法在文本分类的性能上有一定提升。

一种阈值优化的文本语义分类算法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !