本文针对LBP算法特征包含outlier和维度过高的问题提出了一种基于鲁棒的局部二值模式(RobustLBP)的快速有效的人脸识别算法。RobustLBP算法的思想是在LBP算法的基础上加上一个Robust函数除去outlier达到降维的目的。首先通过计算LBP特征各个维度和中心元素的马氏距离作为Robust函数的输入,使得Robust函数收敛估算出重要信息。然后利用这些信息求出变换矩阵除去原始LBP特征的outlier。最后比对降维后特征间的卡方距离实现人脸识别。在FERET、CAS-PEAL-R1、LFW人脸数据库上的实验证明本文提出方法在是人脸识别上具有优越性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !