×

说话人识别中基于Fisher比的特征组合方法

消耗积分:3 | 格式:rar | 大小:0.75 MB | 2017-12-19

分享资料个

  为了提高说话人识别的准确率,可以同时采用多个特征参数,针对综合特征参数中各维分量对识别结果的影响可能不一样,同等对待并不一定是最优的方案这个问题,提出基于Fisher准则的梅尔频率倒谱系数(MFCC)、线性预测梅尔倒谱系数( LPMFCC)、Teager能量算子倒谱参数(TEOCC)相混合的特征参数提取方法。首先,提取语音信号的MFCC、LPMFCC和TEOCC三种参数;然后,计算MFCC和LPMFCC参数中各维分量的Fisher比,分别选出六个Fisher比高的分量与TEOCC参数组合成混合特征参数;最后,采用TIMIT语音库和NOISEX-92噪声库进行说话人识别实验。仿真实验表明,所提方法与MFCC、LPMFCC、MFCC+ LPMFCC、基于Fisher比的梅尔倒谱系数混合特征提取方法以及基于主成分分析(PCA)的特征抽取方法相比,在采用高斯混合模型(GMM)和BP神经网络的平均识别率在纯净语音环境下分别提高了21. 65个百分点、18. 39个百分点、15. 61个百分点、15. 01个百分点与22. 70个百分点;在30 dB噪声环境下,则分别提升了15.15个百分点、10. 81个百分点、8.69个百分点、7.64个百分点与17. 76个百分点。实验结果表明,该混合特征参数能够有效提高说话人识别率,且具有更好的鲁棒性。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !