×

深度网络模型压缩综述

消耗积分:3 | 格式:rar | 大小:1.03 MB | 2017-12-19

分享资料个

  深度网络近年在计算机视觉任务上不断刷新传统模型的性能,已逐渐成为研究热点.深度模型尽管性能强大。然而由于参数数量庞大、存储和计算代价高,依然难以部署在受限的硬件平台上(如移动设备).模型的参数一定程度上能表达其复杂性,相关研究表明并不是所有的参数都在模型中发挥作用,部分参数作用有限、表达冗余、甚至会降低模型的性能.本文首先对国内外学者在深度模型压缩上取得的成果进行了分类整理,依此归纳了基于网络剪枝、网络精馏和网络分解的方法;随后,总结了相关方法在多种公开深度模型上的压缩效果;最后,对未来研究可能的方向和挑战进行了展望。

深度网络模型压缩综述

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !