×

网络的微博话题发现

消耗积分:1 | 格式:rar | 大小:0.73 MB | 2017-12-19

分享资料个

  针对微博的实时性、稀疏性和海量性特点,提出基于实时词共现网络的话题发现模型。首先,从原始语料中筛选出主题词集合,再利用时间参数计算共现主题词的关系权重以实现词共现网络的构建,通过该网络推算出与话题关联性强的潜在特征词以解决微博特征词的稀疏性;其次,采用改进Single-Pass算法实现话题增量聚类;最后,对每个话题的主题词按热度计算进行排序,获得最具代表性的话题主题词。实验结果表明,该模型与经典Single-Pass聚类算法相比,话题发现准确率约提高6%,综合指标提高8%。实验结果证明所提模型的有效性和准确性。

网络的微博话题发现

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !