偏好多目标进化算法是一类帮助决策者找到感兴趣的Pareto最优解的算法.目前,在以参考点位置作为偏好信息载体的偏好多目标进化算法中,不合适的参考点位置往往会严重影响算法的收敛性能,偏好区域的大小难以控制,在高维问题上效果较差,针对以上问题,通过计算基于种群的自适应偏好半径,利用自适应偏好半径构造一种新的偏好关系模型,通过对偏好区域进行划分,提出基于偏好区域划分的偏好多目标进化算法.将所提算法与4种常用的以参考点为偏好信息载体的多目标进化算法g-NSGA-II、r-NSGA-II、角度偏好算法、MOEA/D-PRE进行对比实验,结果表明,所提算法具有较好的收敛性能和分布性能,决策者可以控制偏好区域大小,在高维问题上也具有较好的收敛效果.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !