粗糙K- Means及其衍生算法在处理边界区域不确定信息时,其边界区域中的数据对象因与各类簇中心点的距离相差较小,导致难以依据距离、密度对数据点进行区分判断。提岀一种新的粗糙K- Means算法,在对数据进行划分时,综合数据对象的局部密度与邻域归属信息来衡量数据点与类簇的相似性,边界数据与类簇之间的关系由其局部的空间分布所决定,使得模糊不确定信息之间的差异更明显。在人工数据集和UCI标准数据集上的实验结果表明,该算法对边界区域数据的划分具有更高的准确率。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !