针对标准和声搜索(HS)算法易陷入局部最优、收敛精度不高的不足,提出了一种基于圆形信赖域(CTR)的新型和声搜索算法-CTRHS。该算法运用逐双音调一次性产生方式,在记忆思考环节交互式地采取面向圆形信赖域的集约化思考操作,在双音调微调环节利用当前和声记忆库中的最好或最差和声来确定微调带宽,并且以新生成和声直接替换当前和声记忆库中最差和声来实现和声记忆库的更新。通过在9种标准测试函数上对CTRHS算法进行实验验证和算法性能对比,结果表明CTRHS算法在解质量、收敛性能上优于文献中已报道的7种HS改进算法,且当和声记忆库规模(HMS)、和声记忆库思考率(HMCR)分别取5和0.99时,它能表现出更佳的全局优化性能。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !