通用GPU因其强大的并行计算能力成为新兴的高性能计算平台,并逐渐成为近年来学术界在高性能数据库实现技术领域的研究热点,但当前GPU数据库领域的研究沿袭的是ROLAP(relational OLAP)多维分析模型,研究主要集中在关系操作符在GPU平台上的算法实现和性能优化技术,以哈希连接的GPU并行算法研究为中心.GPU拥有数千个并行计算单元,但其逻辑控制单元较少,相对于CPU具有更强的并行计算能力,但逻辑控制和复杂内存管理能力较弱,因此并不适合需要复杂数据结构和复杂内存管理机制的内存数据库查询处理算法直接移植到GPU平台.提出了面向GPU向量计算特性的混合OLAP多维分析模型semi-MOLAP,将MOLAP(multidimensionalOLAP)模型的直接数组访问和计算特性与ROLAP模型的存储效率结合在一起,实现了一个基于完全数组结构的GPU semi-MOLAP多维分析模型,简化了GPU数据管理,降低了GPU semi-MOLAP算法复杂度,提高了GPU semi-MOLAP算法的代码执行率.同时,基于GPU和CPU计算的特点,将semi-MOLAP操作符拆分为CPU和GPU平台的协同计算,提高了CPU和GPU的利用率以及OLAP的查询整体性能.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !