×

基于深度学习的电容器介损角辨识

消耗积分:2 | 格式:rar | 大小:2.38 MB | 2018-01-19

分享资料个

  当前电容器介质损耗因素的计算方法为正向求解过程,即先对电容器工作电流和电压进行采样,再使用谐波分析等方法计算介损值,实践中算法稳定性不佳。为此提出了一种基于深度学习的电容器介损角辨识方法,采用一段时间的监测值训练深度学习网络,再使用该深度学习网络对新采样的信号进行辨识,判断介损角变化量(分辨率为0. 001%)。给出了用于深度学习的介损角表示信号D8(t)的计算过程,证明了在讨论域内该信号的幅值即是介损角6,且其波形形状包含监测装置受到的干扰。仿真实验证明该方法有效,比加汉宁窗的谐波分析法具有更好的抗噪能力。实际在线监测样本的计算结果表明其稳定性优于加汉宁窗的谐波分析法,且辨识结果不受电压互感器角差的影响。

基于深度学习的电容器介损角辨识

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !